
HEP-CCE

Investigate HDF5 as
intermediate event storage for

HPC processing
Saba Sehrish for the HEP-CCE IOS team
11/04/2020 HEP-CCE All-hands meeting

HEP-CCE
What are we doing?

● The focus of this activity is to explore the use of HDF5 files for writing
HEP data products that have already been serialized using ROOT
serialization.

● We are interested in developing an experiment-independent approach.
● We are currently using a multi-threaded testing framework developed as

part of the CCE project to work on the use of HDF5.
● This work is the first attempt to write intermediate output in HDF5 style.
● We have demonstrated the efficient and high performing data access

and hence subsequent analysis by using HDF5 representation of the
analysis-ready data in SciDAC (HEP on HPC) project.

HEP-CCE
Why HDF5?
● HDF5 (Hierarchical Data Format) is a portable, self-describing file

format designed to store large amounts of data
○ It is maintained by the HDF Group [https://www.hdfgroup.org]
○ It is widely available at HPC centers, and easily installable on laptops
○ It supports parallel IO using MPI, and has special drivers tuned for parallel file

systems at HPC centers

● A few key abstractions are:
○ datasets, which are multidimensional arrays of homogeneous types,
○ groups, which are containers of datasets and other groups, and
○ attributes, which are small metadata objects to describe groups and datasets

● Allows efficient columnar data access for the “required” data products

https://www.hdfgroup.org

HEP-CCE
What HEP data looks like?

• Different levels of data aggregation: Run/lumi or subrun/event/data
products

• Data products are complex data structures representing physics objects
• Each event consists of several different data products and data product

size varies from event to event.
• In the current Framework, for non-ROOT format data is serialized before

writing to the file and for ROOT, serialization is internal to the writing
process.

HEP-CCE
Mapping HEP data to HDF5

There is no direct mapping to HDF5 way of organizing data. But ...

● map a subrun/lumi to a group and add lumi and run number as
attributes

● map each data product to multiple data sets; first dataset for data
product itself, and the second dataset for event ID, and another for
offset or size.

○ Different options explored

● read and write performance will depend on access patterns

HEP-CCE
Use 1D variable string dataset

● 1D dataset of variable length string per serialized data
product

○ There are performance, accuracy and space concerns
associated with converting to string and storing them

An example layout of a data product for 4
events using 1D dataset of strings shown in
green color. The event ID and offset of each
row have to be stored in separate datasets to
indicate the (variable) length of each data
product.

3

2

4

3

1

2

3

4

Event ID
dataset

Data product
size dataset

Data product dataset

Dimension: 4 x 1 for all three data sets

HEP-CCE

A 2D dataset of chars with the higher dimension of fixed size
(maximum size of the data product), need to store size in a
separate dataset

• more space, extra calculation for maximum data product size and
resize calls

Use 2D dataset of chars

An example to layout a data product
for 4 events. We create a 4x4 2D
dataset, but it can be seen that not all
data products are of size 4 as shown
by green boxes. The size of each row
have to be stored in separate
datasets to indicate the length of each
data product.

3

2

4

3

1

2

3

4

Event ID
dataset

Data product
size dataset

Data product dataset

Dimension: 4 x 1 for first 2 data sets and 4x4 for the last one

HEP-CCE
Using 1D dataset of chars

This is our current implementation strategy.
● one group per subrun,
● run number added as a group attribute,
● 1D dataset for event IDs per group,
● 1D dataset of chars for data products per

different data product type, and
● a corresponding 1D dataset for size/offset

per event.
An example to layout a data product for 4 events in 1D
dataset. The event ID and either size/offset of each row
are stored in separate datasets to indicate the length of
each data product.

3/0

2/3

4/5

3/9

1

2

3

4

Event ID
dataset

Data product
size/offset

dataset

Data
product
dataset

Dimensions:
12 x 1 for
data product
dataset and
4x1 for the
other two

HEP-CCEAn example
HDF5 file

• One group named Lumi
• Two attributes; one for lumi

number and one for run number
• One dataset for EventIDs; not

captured in this screenshot
• Two dataset for each product in

the event

HEP-CCECurrent status and
next steps

● Chris Jones developed a mini test Framework which can
“process/serialize” events concurrently and has different modes of
input and output.

○ Please see Chris’s talk for more details.
● We have implemented the HDFOutputer for the test Framework
● We used HighFive C++ HDF5 library

○ H5CPP, hephpc_toolkit
● Able to run with a realistic CMS RECO file, and immediately

caught a few performance issues;
○ Use chunking: What chunk size to use?
○ Use batch writes: How many data products to accumulate before writing?

● HDFSource to be able to read in HDF5 files via framework

HEP-CCE
Plan
● Do we need to look at different layout?

○ One variation of the last option was suggested on HighFive forum, i.e. to consider using
Compressed Row Sparse matrix approach.

○ Compound data types instead of breaking down data products into multiple datasets

HEP-CCEA variation: using 1d dataset
of compound datatype

A compound datatype representing each data product will consist of:
• a data array of chars of fixed size (maximum data product size)
• size_t (actual size of the data product)

An example to layout a data product
for 4 events. We create a 1D dataset
of compound type.

Dimension: 4 x 1 for both data sets

3

2

4

3

1

2

3

4

Event ID
dataset

Data product and size as
compound type dataset

HEP-CCE
Plan

● Do we need to look at different layout?
○ One variation of the last option was suggested on HighFive forum, i.e. to consider using

Compressed Row Sparse matrix approach.
○ Compound data types instead of breaking down data products into multiple datasets.

● HDF5 tuning
○ Chunking: Looked at some prelim numbers, using 128 chunk size, which seems to work

fine
○ Asynchronous I/O: Use a background thread to perform I/O

● Compression
○ In both serial and parallel mode, and combined with chunking

● Using node-local storage for storing intermediate HDF5 files
● Parallel IO (using multi-process MPI-based writes)
● Multi-threaded HDF5

○ There is a feature branch available with simple read/write patterns, which we have in our
use case, that we should look into

● Explore direct storage access from GPUs

